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Radial sampling in multidimensional NMR experiments offers greatly decreased acquisition times while
also providing an avenue for increased sensitivity. Digital resolution remains a concern and depends
strongly upon the extent of sampling of individual radial angles. Truncated time domain data leads to
spurious peaks (artifacts) upon FT and 2D FT. Linear prediction is commonly employed to improve reso-
lution in Cartesian sampled NMR experiments. Here, we adapt the linear prediction method to radial
sampling. Significantly more accurate estimates of linear prediction coefficients are obtained by combin-
ing quadrature frequency components from the multiple angle spectra. This approach results in signifi-
cant improvement in both resolution and removal of spurious peaks as compared to traditional linear
prediction methods applied to radial sampled data. The ‘averaging linear prediction’ (ALP) method is
demonstrated as a general tool for resolution improvement in multidimensional radial sampled
experiments.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Sparse sampling of multidimensional NMR experiments has
proven useful for studies of biopolymers in many contexts [1–7].
Radial sampling is particularly appealing because of the predict-
ability of the resulting artifacts, the ability to collect a minimal
data set to extract the information of interest without regard to
processing artifacts and the statistical nature of the data. This sam-
pling scheme allows for a simultaneous optimization of both
acquisition time and resolution, while in principle retaining infor-
mation equivalent to a traditional Cartesian sampled experiment
[8,9]. Further, if the appropriate criteria are met an increase in sig-
nal-to-noise of the final spectrum is achievable [9]. The advantages
of radial sampling result from the circumvention of the strict
orthogonal sampling requirements imposed by traditional Carte-
sian sampling. In the case of a three-dimensional NMR experiment,
radial sampling is achieved by simultaneously evolving the two
indirect time domains such that t1 is sampled at s cos(a) and t2

is sampled at s sin(a), where a is a selected angle between the
two orthogonal time domains and s is a common incremented
time [10]. The directly acquired dimension is sampled traditionally
resulting in a 2D plane of data points for each angle sampled. An
important result of the radial sampling scheme is the fact that
the underlying frequency components are underdetermined,
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which results in artifactual ridges of intensity in the spectrum
when processed with either projection reconstruction [10] or the
direct multidimensional Fourier transform [11–13].

The details of radial sampling artifacts have been extensively
analyzed and a variety of schemes have been developed to remove
them [6,10,14]. Two commonly preferred methods for generating a
final spectrum are the lower value (magnitude) algorithm, which
strives to remove the ridges, and the additive back projection algo-
rithm, which attempts to enhance the signal while still retaining
the artifacts. Both approaches exploit the fact that the ridge arti-
facts vary in a known way as a function of the sampling angle.
The lower magnitude algorithm compares the individual angle
spectra and retains the minimum absolute value at each frequency
pair to generate a spectrum free of ridge artifacts. The additive
back projection method simply sums equivalent points from the
angle spectra which results in a final spectrum containing ridge
artifacts at a fraction of the intensity of the authentic peaks.

The success of radial sampling primarily depends upon the set
of angles employed. In the case of the lower magnitude algorithm
artifacts are only removed if baseline is present at the equivalent
chemical shifts of the ridge in at least one angle spectrum. In the
case of additive back projection, artifact peaks are reinforced if arti-
fact ridges intersect in multiple sampling angle spectra. Appropri-
ate angle selection minimizes these intersections. We have
previously presented a methodology for optimized angle selection
and have shown that angle selection can often be dependent upon
the effective line width of the peaks in the spectrum [15]. Thus, it is
essential to obtain the narrowest possible effective linewidth. As
with classic multidimensional NMR spectra, the true linewidth is
often never reached in the explicitly sampled time domain. In this
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context, the forward–backward linear prediction method [16] is
routinely used to extend the experimentally sampled time domain
data where independent coefficients are determined for forward
and backward application of linear prediction and averaged
respectively. Here we extend these ideas in an effort to reduce line-
widths of radial sampled data. This is accomplished by exploiting
the redundancy of radial sampled data to more accurately deter-
mine linear prediction coefficients.
Fig. 1. A general overview of the average linear prediction algorithm. The algorithm
works by calculating a set of linear prediction coefficients in parallel for each radial
sampling angle data set quadrature component. The coefficients are then used to
solve for the characteristic polynomial roots, which in turn are combined to
estimate the underlying amplitude and frequency components. The frequency
components are averaged across all angle data sets. Finally, an improved set of
coefficients are back-calculated. The improved set of coefficients can be used to
predict additional data points with improved accuracy.
2. Results

Using the averaging concept inherent to forward–backward lin-
ear prediction, linear prediction methodology is extended for
application to radial sampled NMR data here by exploiting the fact
that multiple angle data sets are collected to generate a final spec-
trum. While conventional linear prediction can be applied to the
multiple angle data sets independently, the coefficients obtained
from different sampling angles are not directly comparable. Here
we develop a means to combine the coefficients of data from mul-
tiple sampling angles by estimating and averaging the underlying
frequency components. This allows a set of coefficients with im-
proved accuracy to be generated. The approach is outlined in
Fig. 1. The mathematical basis of linear prediction is well known
[17,18] and only those details needed for optimizing linear predic-
tion of radial sampled data are recapitulated here.

In the case of a three-dimensional NMR experiment with radial
sampling of the two indirectly sampled time domains, the time
series for the co-evolved indirect dimension may be written as:

xk ¼
XM

k¼1

Akeð�i2px1k�R12ÞnDs cosðaÞeð�j2px2k�R22ÞnDs sinðaÞ ð1Þ

where i and j are quaternion numbers, x1k and x2k are the fre-
quency components in t1 and t2 indirect time domains, respectively,
and M is the total number of frequency components. R12 and R22 are
the effective transverse relaxation rates in t1 and t2 indirect time
domains, respectively. The acquisition dimension of the experiment
is treated traditionally and will be excluded from this analysis.

Consistent with Eq. (1), four quadrature components are col-
lected and stored independently. Previously, the individual quad-
rature components have been combined according to the
quadrature rules of projection reconstruction and linear prediction
was used to extend the projection data [10]. Alternatively, linear
prediction could be applied to each of the four components sepa-
rately and then combine the terms subsequently to reconstitute
the signal before any final processing. As we will show below,
treating the four quadrature components independently is neces-
sary to appropriately model the underlying frequency. Addition-
ally, treating the components independently further exploits the
inherent redundancy of radial sampled data. Therefore, the linear
prediction coefficients are calculated in parallel for the four quad-
rature components of each sampling angle using the forward linear
prediction approach (step I of Fig. 1). Forward linear prediction is
commonly represented as:

xn ¼
XM

k¼1

akxn�k ð2Þ

where ak are the linear prediction coefficients, xn�k are the existing
data points, xn are future data points and M is the number of predic-
tion coefficients. Among the various methods available to solve for
the linear prediction coefficients single value decomposition (SVD)
is used here to determine the set of coefficients because of its opti-
mal noise handling [19].

Once a set of coefficients are determined for quadrature compo-
nents of each angle, they are utilized independently to generate a
characteristic polynomial describing the time series for each com-
ponent. The polynomial, described in Eq. (3), is a function of the
arbitrary variable z and ak are the coefficients defined in the previ-
ous step.

PðzÞ ¼ zM �
XM

k¼1

akzM�k ð3Þ

The polynomial is equated to zero and factored to determine the
roots of the equation in parallel for each angles quadrature set
(step II of Fig. 1). In the present case, we have found that the fac-
toring is efficiently performed by generating a companion matrix
and solving for the eigenvalues [20].

From Eq. (1) the roots for each of the quadrature components
for each of the M coefficients can be modeled as:

RCC;k ¼ Ak cosðx1ks cosðaÞÞ cosðx1ks sinðaÞÞ ð4aÞ

RCS;k ¼ Ak cosðx1ks cosðaÞÞ sinðx1ks sinðaÞÞ ð4bÞ

RSC;k ¼ Ak sinðx1ks cosðaÞÞ cosðx1ks sinðaÞÞ ð4cÞ

RSS;k ¼ Ak sinðx1ks cosðaÞÞ sinðx1ks sinðaÞÞ ð4dÞ



Fig. 2. The improvement in linear prediction coefficient accuracy is assessed
through generated data. A radial sampled data set was generated according to Eq.
(1). The noise free data contained 10 peaks using 40 quaternion data points. This
data set was truncated to 24 quarternion points and random noise was then added.
Using 10 coefficients for each of forward, forward–backward or averaging linear
prediction with an increasing number of angles, an additional 16 quarternion points
were generated. The newly generated 16 points were compared to the noiseless
points. The procedure was repeated to generate a standard deviation from the
actual values, each time with varying random noise.
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The roots of each of the four quadrature components of the ra-
dial sampled data are modeled as functions of frequencies x1k, x2k,

sampling angle, a, and amplitudes Ak. It is important to note that
Eqs. (4a)–(4d) are models of the roots. The two frequencies used
in the model are apparent frequencies defined by the model and
not the actual frequency values inherent to the data. The four root
components arising from the four quadrature components are des-
ignated by whether the time domains are modulated with respect
to cosine or sine for either time domain t1 or t2. Unlike forward–
backward linear prediction, where the roots are averaged to calcu-
late a new set of coefficients, variation of the sampling angles used
in the data sets requires that the model frequency components be
determined prior to comparison (step III of Fig. 1). Model frequen-
cies x1k and x2k are determined independently by solving the
appropriate ratios of the corresponding roots. At this point, the
combination of all four quadrature components also provides a
means to reduce the noise in the model frequency calculation.
The expressions for x1k and x2k are written as:

x1k ¼
arctanðRSC;k=RCC;kÞ þ arctanðRSS;k=RCS;kÞ

2s cosðaÞ ð5aÞ

x1k ¼
arctanðRSS;k=RSC;kÞ þ arctanðRCS;k=RCC;kÞ

2s sinðaÞ ð5bÞ

Correspondingly, Ak is given by:

Ak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

CC;k þ R2
CS;k þ R2

SC;k þ R2
SS;k

q
ð6Þ

Typically the calculation of frequencies using linear prediction is
avoided because of the inaccuracy of the determined frequency
components. The inaccuracies arise in the first step of linear predic-
tion when the coefficients are determined and are propagated in all
subsequent steps. Therefore, the accuracy of the model frequency
values determined in Eqs. (5a) and (5b) are directly dependent on
both the signal-to-noise of the data and the linewidth variation as
a function of the sampling angle [10]. The data noise causes the
model frequencies error to vary according to the noise distribution
intensity. Accordingly, the errors of the model frequencies increase
as the linewidths increase. The linewidths increase as a function of
cos(a) and sin(a) for x1 and x2 respectively. The same model is
used for all angle data sets and therefore the model frequency
and amplitude values are directly comparable across the entire data
set and are averaged (step IV of Fig. 1). Averaging across multiple
angle data sets increases the accuracy of the estimated frequencies,
by reducing the noise related error of the frequency according to
the variance sum law. The accuracy of the final model frequency
components is further increased by accounting for the linewidth re-
lated error by weighting the average according to 1/sin(a) and 1/
cos(a) for the x1 and x2 components respectively. The new roots
are calculated for each quadrature component using Eqs. (4a)–
(4d) (step V of Fig. 1). Finally, the new improved sets of coefficients
for each sampling angle, are calculated from the new roots by using
the characteristic polynomial which can be formulated from the
new roots (step VI of Fig. 1).

PðzÞ ¼
YM

k¼1

ðz� R0kÞ ð7Þ

The polynomial utilizes the improved roots, R0k. This method for
calculating coefficients from the roots using the characteristic
polynomial is opposite of that of calculating roots from coefficients
using the polynomial described in Eq. (3). The improved set of coef-
ficients evaluated by expanding Eq. (7) are the coefficients terms of
the polynomial zk, where i belongs to [0, M � 1]. The improvement
in the accuracy of the linear prediction coefficients versus the
number of radial sampling angle data sets is demonstrated for gen-
erated data in Fig. 2. This test was performed by generating a noise
free radial sampled data set according to Eq. (2) composed of 40
increments. Subsequently, this data set was truncated to 24 incre-
ments and random noise was added. Linear prediction coefficients
were calculated using forward, forward–backward or the new
averaging linear prediction. Using the calculated linear prediction
coefficients an additional 16 increments were generated and com-
pared to the corresponding points from the original untruncated
data set. This procedure was repeated to determine the standard
deviation of the predicted points from the actual values. Inspection
of the figure demonstrates that the error in prediction decreases
exponentially as the number of angles increases.

The final step of extending the data using linear prediction ap-
plies the new improved coefficients to Eq. (2) in step VII of Fig. 1.
Ideally, the number of predicted points should be less than or equal
to half the number of data points in order to be accurately solved
using SVD, provided the number of coefficients used is greater than
or equal to the number of frequency components. Here, using aver-
aging linear prediction we stretch this limit by predicting more
than half the number of data points used and demonstrate the
advantage of this method over both forward and forward–back-
ward LP in the upper limits of the number of points that can be
accurately predicted.

To illustrate the improvement in resolution achieved by aver-
aged linear prediction (ALP), we collected a (3,2) radial sampled
HNCA with 24 quaternion data points for each of 17 angles span-
ning 5–85�. A comparison of the various linear prediction methods
is shown in Fig. 3 using a perpendicular slice through the radial
sampled dimension of the +25� ridge spectrum. As evident in the
figure, average linear prediction produces superior resolution for
equivalent data. The improvement in resolution is a direct result
of increased accuracy of the linear prediction coefficients which
is clearly indicated by increasing the number of angle data sets
averaged from 8 to 17. Further, the figure also demonstrates the in-
creased performance of the lower value algorithm to resolve all of
the peaks in a final spectrum when the peaks are appropriately re-
solved in the component spectra.



Fig. 3. Demonstration of the advantage of averaged linear prediction in processing radial sampled NMR data. Panel A shows the two-dimensional indirect frequency plane of
a linear predicted (ALP) radial sampled HNCA sampled at 25�. The equivalent peaks from the traditionally sampled Cartesian spectrum are overlaid to indicate the authentic
intensity. The overlaid dashed line indicates the vector perpendicular to the artifact ridges, the intensity along which is indicated as a projection outside the spectrum. Panel B
compares the same spectrum slice from each of the spectra processed with the noted type of linear prediction. It is clear that average linear prediction accurately increases
the resolution of all of the peaks in the spectrum resolves all of the peaks in the spectra when 17 sampling angles are used. Panels C and D demonstrate the advantage of
applying averaging linear prediction to generate a final spectrum using the lower value comparison. Panel C shows the indirect plane processed without any linear prediction
while Panel D shows the equivalent plane processed with average linear prediction. In all cases the data was linear predicted from 24 quaternion data points to 40 quaternion
points using 10 linear prediction coefficients.
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3. Discussion and conclusion

Radial sampling has shown tremendous potential for overcom-
ing the sampling limitations of multidimensional NMR experi-
ments. Efficient application of radial sampling depends on the
optimal angle selection and collection of high quality angle plane
data in order to generate an accurate final spectrum [15]. We have
previously presented means to optimally determine a set of sam-
pling angles. Here, we have presented the means to enhance the
quality of the sampling angle data. A novel linear prediction meth-
od, averaging-LP, is introduced and its application to radial sam-
pled data has been tested. Averaging-LP exploits the inherent
redundancy of radial sampled data sets and results in increased
accuracy of linear prediction coefficients which in turn decreases
the linewidths and truncation artifacts, which manifest themselves
as a ripple pattern in the component angle spectra [8]. The advan-
tages of a decreased linewidth are at least twofold. First, the de-
creased linewidth directly affects the efficient generation of a
final spectrum when either additive back-projection or lower value
methods are used. Second, the decreased linewidth indirectly af-
fects the number of increments necessary to obtain a suitable line-
width which in turn, allows for the collection of more angles per
unit time. The availability of additional angles serves to aid in
the reduction of reconstruction artifacts. Although tested in the
context of the direct two-dimensional Fourier transform and the
lower value comparison, averaging-LP is apparently applicable to
any method capable of processing radial sampled data. Finally, it
is noted that the fundamental limitations of traditional linear pre-
diction also apply to averaging-LP. The presence of a large number
of frequency components or poor sensitivity in a particular vector
of the indirect dimension constrains the applicability of averaging-
LP to radial sampled data.
4. Methods

Recombinant ubiquitin was prepared as described [21]. NMR
data was collected on a 1 mM 13C, 15N uniformly labeled sample
of human ubiquitin at 25 �C on a Bruker Avance III 500 MHz
NMR spectrometer equipped with a 5 mm triple resonance TCI
cryogenic probe. The sample was prepared in 50 mM potassium
phosphate buffer pH 5.5 with 50 mM NaCl and 0.04% sodium azide
in 90% H2O/10% D2O. Data was collected using a standard HNCA
[22] or a modified version for radial sampling, such that t1 = t1co-
s(a) and t2 = t1(sw1/sw2)sin(a). The Cartesian experiment was col-
lected using 36 complex points in both of the indirect
dimensions for a total of 5184 FIDs. Each FID was the average of
4 transients and contained 512 complex points requiring approxi-
mately 6 h of measurement time. The spectral width was set to 12,
27 and 35 ppm for proton, nitrogen and carbon respectively. The
carriers for each dimension were set to 7.73, 117.98 and 54 ppm.
for proton, nitrogen and carbon respectively. The maximum acqui-
sition times for the nitrogen and carbon dimensions were 0.0264
and 0.0082 s, respectively. In the case of radial sampling all exper-
imental parameters, excluding the incremented times, were set to
equivalent values as the Cartesian experiment. All of the radial
sampled experiments utilized 24 quaternion data points, requiring
four quadrature components per data point. Each sampling angle
plane required 6.5 min of measurement time. The angle spectra
were processed independently using a direct 2D Fourier transform.
Prior to Fourier transforming, the data was linear predicted and
apodized with cosine squared function to remove truncation arti-
facts. Following processing, individual angle spectra were com-
pared using the lower value (magnitude) algorithm to remove
the ridge artifacts [10]. The Cartesian sampled data was processed
with corresponding apodization and zero filling. The fast Fourier
transform was used in place of the direct 2D Fourier transform.
All processing was done using an in-house program to be described
elsewhere and visualized using Sparky [23].
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